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Abstract: 
The efficiency of transporting and storing a large number of containers to and from the 
quayside is critical to any container terminal. We investigated the integration of straddle 
carrier scheduling and container storage problems in the dual-cycle operations. We 
formulated this integrated problem into a mixed-integer programming model and the 
objective is to minimise the ship’s berth time. Optimal solutions can be obtained for small-
sized problems. However, due to computational difficulty, a genetic algorithm (GA) is 
developed to provide approximately optimal solutions for large-sized problems. The 
experimental results show the effectiveness of the proposed modelling approach and GA. 
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1 Introduction 
Container terminals serve as an interface between marine and land transportation systems. 
Since the introduction of containerisation in 1960s, the number of containers handled 
worldwide has dramatically grown every year. With the increasing containerisation, 
nowadays container terminals are working at maximum capacity. Therefore, it is critical to 
improve the operational efficiency of container terminals in order to deal with the ever-
increasing number of container flows.  
 In a typical container terminal, quay cranes (QCs) are equipped at the seaside for 
unloading/loading containers from/onto ships; yard cranes (YCs) are used for stacking and 
storing containers in the yard; and vehicles are travelling in between for transporting 
containers. In this work, we consider another type of container terminal, named straddle 
carrier (SC) system, in which only QCs and SCs are used in handling containers. SC is one 
type of vehicle and it has the ability to lift containers without additional aid from other 
equipment. Therefore, SCs are able to substitute YCs for stacking containers in the yard. The 
SC system is mainly adopted in Europe, such as DP world Southampton, Le Havre Port 
France and Wilhelmshaven Germany (Luo, 2013). Figure 1 shows a straddle carrier working 
at the terminal. The layout of a SC system is shown in figure 2. 
 

  
Figure 1: straddle carrier is used for 
transporting and stacking containers 

Figure 2: the layout of a straddle carrier 
system 

 
 There are two processes in container terminal’s operation, which are unloading process 
and loading process. In a SC system, during the unloading process, a QC picks up a container 
from the ship, and puts it in the buffer area under this QC. The buffer area functions as a 
temporary storage site for SCs to come and collect containers, because QCs cannot put 
containers directly onto SCs. Then a SC picks up a container and delivers it to the yard; there 
are wide aisles between each yard bay giving enough space for the SCs to pass through; after 
storing this container in the yard, the SC returns to the ship to process the next container. The 
loading process is in the reverse direction of the unloading process. Our work considers the 
unloading and loading processes simultaneously, which is called the dual-cycle operation.  
 Effectively scheduling of vehicles and allocating storage locations to containers are 
important to improve the container terminal’s performance (Steenken et al., 2004). Therefore, 
these two main operational issues have been investigated in this study: vehicle scheduling 
and container storage problems. Specifically, vehicle scheduling is one of the major planning 
problems in container terminal operations. It is usually formulated as transportation-type 
assignment problems, which determine how to dispatch vehicles to tasks (Das and Spasovic, 
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2003). Inefficient vehicle schedules will cause delays in container-handling processes and 
thus affect the productivity of container terminals; On the other hand, container storage 
problem is another important issue due to the very limited space for accommodating the 
increasing volume of containers, which makes the yard storage space becoming a critical 
resource. Many previous studies only discussed these two problems separately (for example, 
Kim and Bae (2004), Ng and Mak (2005), Ng et al. (2007) and Nishimura et al. (2005)), 
however, practically SC scheduling and container storage problems are interdependant on 
each other. The schedule of a SC decides the storage locations of all the containers it carries, 
and in turn, container storage locations determine the travelling times of this SC from/to the 
quayside. If these two problems are considered seperately, a container can be assigned far 
away from the quayside, thus prolong the travelling times of SCs, which delays the overall 
performance of the unloading and loading operations.   
 Our main contribution is that we have provided the integrated modelling approach for such 
practical problem, considering the SC scheduling and container storage problems 
simultaneously in the dual-cycle operations. The model determines the time/sequence to 
deliver each container by SCs and the locations to store each container. We aim to minimise 
the ship’s berth time, i.e. the time all the containers have been unloaded/loaded from/onto the 
ship, which is one of the most important measures for a container terminal’s efficiency and it 
usually represents the amount of time that a ship spends at the terminal. Another contribution 
is that we have also developed an efficient genetic algorithm (GA) to provide near-optimal 
solutions for this integrated problem in large sizes. 
 The remaining part of this paper is organized as follows: Section 2 reviews the straddle 
carrier scheduling and container storage allocation problems in the literature. Section 3 
provides detailed problem description and associated mathematical formulation of the 
problem shown in the appendix. Section 4 designs a GA particularly adapted to the nature of 
our MIP model for deriving approximately optimal solutions, which would be able to handle 
large-sized problems. The experimental results are presented and discussed in section 5. The 
paper concludes with a summary of key findings and gives future research directions in 
section 6. 

2 Literature review 
Researches related to container terminal operations have gained extensive attention recently 
due to the development of marine transportation system. Stahlbock and Voß (2008) and Carlo 
et al. (2014b) reviewed the literature on container terminal operations, following the 
extensive review work by Steenken et al. (2004). In this section, we give a brief review of 
existing research on straddle carrier scheduling and container storage allocation problem in 
container terminals. Previous studies on using the GA to solve relevant optimization 
problems will be presented as well. 
 In general, the amount of research on SC (which is also called the lifting vehicle (LV)) 
scheduling problem is relatively small. For the problem of scheduling SCs, Steenken et al. 
(1993) tested different methods for the routing of SCs in order to minimise no-load ways. 
Kim and Kim (1999b) formulated a MIP model for routing a single SC during the loading 
operation of export containers. They aimed to minimise the total travel time of a SC. Das and 
Spasovic (2003) presented the procedure for scheduling of SCs by using a simulation method. 
The objective was to minimise the empty-loaded travel of SCs and the delay of trucks. In 
both of these studies, containers are handled by a combination of yard trucks and SCs. 
However, as mentioned above, our study is carried out in a container terminal based on the 
straddle-carrier system, where SCs could travel between the quayside and storage yard, and 
also function as flexible moving YCs for stacking containers. Moussi et al. (2011) discussed 
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how to schedule LVs in loading/unloading operations by using information about pickup and 
delivery locations. The aim was to minimise the total travel time of all LVs. Boysen et al. 
(2013) studied the SC scheduling problem during the process of moving containers from 
storage yard to the trains in hinterland. Cai et al. (2013) presented a multi-objective (i.e. 
minimising SCs travelling time, SC waiting time, and finishing time of high-priority 
container-transferring jobs) optimisation model for the automated SCs scheduling problem. It 
was formulated as a binary integer programming model and solved by an exact algorithm 
based on the Branch and Bound (B&B) method with column generation. Zehendner et al. 
(2015) addressed an optimisation simulation method for the scheduling of SCs, aiming to 
minimise the overall delays. Different service strategies in a real-world terminal have been 
discussed. An agent-based simulation model is proposed by Garro et al. (2015) to determine 
the SC schedules in a transshipment terminal. The objective was to minimise the total empty-
loaded travel of SCs, taking into account other performance measures, such as the total 
completion time and the idle time.  
 Storage space is a critical resource in container terminals, and the container storage 
allocation problem which determines container storage space and locations has been 
extensively studied. Carlo et al. (2014a) presented an overview of storage yard operations and 
highlighted current trends and developments. Kim and Kim (1999a) studied how to allocate 
storage space for import containers by analysing cases when the arrival rate of containers is 
constant, cyclic and dynamic. For each arriving vessel, spaces have been allocated to 
minimise the expected total number of rehandles. Kozan and Preston (1999) considered an 
optimisation problem of container transfer schedules and storage policies. Factors that 
influence the efficiency of a container terminal were analysed at a container terminal with 
different types of handling equipment, storage capacities and alternative layouts. Preston and 
Kozan (2001) modelled the seaport system with the objective of determining the optimal 
storage strategy for various container-handling schedules, such that the setup times and 
transport times become minimal. Zhang et al. (2003) made the first attempt to formulate the 
storage space allocation problem (SSAP) using a rolling-horizon approach. For each planning 
horizon, the problem was decomposed into two levels: the first level determined the total 
number of containers associated with each block in the yard, and the second level determined 
the number of containers associated with each vessel. Murty et al. (2005) proposed a method 
to incorporate dynamic load attributes into space allocation decisions. Bazzazi et al. (2009) 
further extended the work of Zhang et al. (2003) by considering refer and empty containers, 
and developed a GA to solve this problem. Nishimura et al. (2009) addressed the storage 
arrangement of trans-shipment containers on a container yard. An optimisation model was 
developed to investigate the flow of container transfers using intermediate storage at the yard.  
 There are some studies on the integration problems, but not specified in straddle carrier 
system. For example, Meersmans and Wagelmans (2001) presented a branch & bound (B&B) 
algorithm to solve the integrated scheduling problem of various types of handling equipment 
at an automated container terminal. Bish et al. (2001) was the first to study the integrated 
problem of storage allocation and vehicle scheduling. The authors assumed that each 
container had a number of potential locations in the yard. Containers were delivered from the 
ship to the yard by trucks. Bish (2003) extended this work to a combined problem of 
determining every container’s storage location, each vehicle’s scheduling, and the scheduling 
of each quay crane. Bish et al. (2005) further extended this study in developing algorithms for 
solving large sizes problems; however, the integrated problem was still solved separately 
without considering the interactions between the two sub-problems. Han et al. (2008) 
provided another way of integrating yard truck and storage allocation problems in trans-
shipment hubs, which aimed to minimise the traffic congestions caused by yard trucks. Lee et 
al. (2008a) addressed a MIP model for integrating yard truck operations and the container 



6 
 

storage allocation problem for import containers aiming to minimise the completion time of 
operations. The authors also provided a GA and another heuristic algorithm to solve the 
formulated MIP problem. Wong and Kozan (2010) investigated the vehicle scheduling 
problems in a multi-berth and multi-ship environment. The authors also provided a solution 
based on list scheduling and tabu search algorithms to tackle the computational complexity 
issue of the problem. However, in their work, container locations are pre-determined, which 
is different with our work. Luo and Wu (2015) proposed a new approach to determine the 
dispatching rules of automated guided vehicles and container storage locations, considering 
the dual-cycle operations. Niu et al. (2015) focused on the yard truck scheduling and storage 
allocation problems in the unloading process, which was solved by swam intelligence 
technique. Dkhil et al. (2018) proposed an integration problem considering the SC scheduling, 
but only focused in handling import containers, and the objective was to minimise the 
operating cost involved.  
 There exist many studies which have developed a GA for applications in container 
terminal operations. For example, Hartmann (2005) proposed a general model of various 
scheduling problems for SCs, automate guided vehicles, stacking cranes and workers that 
handle reefer containers; the computational results suggested that the GA is suitable to use in 
practice. In the area of quay crane scheduling problems, Tavakkoli-Moghaddam et al. (2009) 
presented a novel MIP model for the QC scheduling and assignment problem in a container 
terminal. They proposed a GA to solve this problem in the large-sized real-world situations. 
The efficiency of the GA was compared against LINGO software in terms of objective 
function values and computational times. From the perspective of scheduling vehicles, Lee et 
al. (2008b) formulated the QC scheduling and yard truck scheduling as a MIP model and 
solved it with a GA because the optimal solutions for large-sized problems cannot be 
obtained by exact algorithm in a reasonable time duration. Choi et al. (2011)  proposed a GA 
for the efficient dispatching of container trucks to minimise the transportation cost of trucks. 
In the field of yard operations, Nishimura et al. (2005) addressed the dynamic assignment 
rules for yard trailers to QCs and the optimisation of yard trailer routing. The GA procedure 
was employed to obtain the near optimal solution to the problem in order to save yard 
operation time and costs. An efficient GA had also been applied to solve the storage space 
allocation problem (SSAP) in a container terminal. More recently, Homayouni et al. (2013) 
presented a GA to solve the integrated scheduling of quay cranes, automated guided vehicles 
and storage problems. A new GA operator was developed to enable to performance of the GA 
more accurate and precise. Kaveshgar and Huynh (2015) applied a GA for solving the 
integrated quay crane and yard truck scheduling problem. GA has been adapted with 
simulation method, as in Al-Dhaheri et al. (2016), in order to tackle the QC scheduling 
problem where the objective was to minimise the vessel handling time. 
 From examining the above literature, to the best of our knowledge, our work is the first to 
study the integration of SC scheduling and container storage allocation problem considering 
both unloading and loading processes. We will also design a novel GA as the solution method 
for large sizes problems. 

3 Problem description 
A ship’s turn-around time is one of the most important values used to measure the terminal’s 
efficiency and it consists of the times needed for unloading and loading containers. As 
explained earlier, in the container terminal with the straddle-carrier system, two main types of 
equipment are involved in the container unloading and loading processes: QCs and SCs. 
 Firstly we introduce the special characteristics of the straddle-carrier system and the dual-
cycle operations in the container terminal. There is a special characteristic in the layout of the 



7 
 

terminal with the straddle-carrier system: a buffer area under each QC for accommodating 
containers must be considered. In fact, during the unloading process, QCs must put containers 
down on the ground for SCs to pick up, which is similar with the loading process. However, 
the capacity of this buffer area is limited due to container re-handling and safety issues. In 
this section, we assume that, at most, one container is allowed at the buffer area for each QC 
during the handling process. The same assumption has been made in the work of Wong and 
Kozan (2010). 
 Secondly, we describe the dual-cycle operation considered in our study. We consider 
unloading and loading processes simultaneously which is defined as the dual-cycle operation 
in our problem. Currently most of the terminals adopt the single-cycle operation strategy, in 
which the loading process starts after the unloading process has been finished. However, 
dual-cycle operations could greatly improve the performance of the container terminal 
because single-cycle operations generate more empty moves of both QCs and SCs. Figure 3 
compares the differences between these two operational strategies. A solid line means the 
loaded moves of QCs and SCs while a dashed line refers to empty-loaded moves of QCs and 
SCs. For the unloading process in the single-cycle method, a QC unloads an import container, 
and places it down in the buffer area under this QC before this container has been collected 
by a SC. This QC then moves on to handle the next import container which is to be 
discharged from the ship. For the transportation process of a SC, it takes a container to the 
yard and stacks it in its location before returning to the quayside without carrying any other 
containers. The loading process from the storage yard to the quayside in the single-cycle 
operation is in the reverse order of the unloading process (see figure 3(1)). However, the 
dual-cycle operations allow both QCs and SCs to perform the unloading of containers in the 
same cycle as the loading of containers (see figure 3(2)). Therefore, dual-cycle operations can 
increase the efficiency of both SCs’ transportation and QCs’ operation and observably reduce 
the empty-loaded moves of both types of handling equipment.  

 
Figure 3: Single-cycle and dual-cycle operational strategies in container terminals 
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 In such a situation that considers both unloading and loading operations, there are four 
transportation conditions for any two consecutive containers delivered by the same SC: 
Condition 1: the SC transfers an import container after another import container. 
Condition 2: the SC delivers an import container after an export container. 
Condition 3: the SC transports an export container after another export container. 
Condition 4: the SC moves an export container after an import container.  
 Thirdly, we introduce the environment of the storage yard. The storage yard consists of 
blocks, which are represented by bays, rows and tiers. Figure 4 shows the structure of a 
container yard in the straddle-carrier system. In this study, the reshuffle problem is not 
considered: we assume all the export containers are located on the top of the stacks and all 
the import containers will be placed on the top of the stacks. 

 
Figure 4: Yard block structure under the straddle-carrier system (source: Wiese et al. (2010)) 
 
 The problems considered in this section are: (1) the SC scheduling problem. Specifically, 
there are a set of containers and a set of SCs. Each container must be processed by a SC once 
and each SC can handle one container at a time. The solution to this problem, which is the 
SC’s schedule, defines the sequences and the start/finish times for every container handled by 
the set of SCs; and (2) the storage allocation problem for import containers. We do not 
consider the storage problems for export containers. This is because the information of export 
containers in the yard is provided by the yard map, which shows the locations for containers 
as well as the information on the type, destination, weight and size of each export container. 
However, the locations for import containers are unknown and taken as a decision variable. 
The decision is to determine where to locate these import containers in the yard. Therefore, 
the main contribution of this study is that it is the first to formulate the integration of SC 
scheduling and container storage problems by considering both unloading and loading 
processes, and to provide solution methods to solve it. The detailed model is presented in 
appendix.  

4 Genetic algorithm for the proposed problem 
Genetic algorithms (GAs) have been used extensively in solving sequencing and scheduling 
problems. GA is a well-known heuristic approach inspired by the natural evolution of the 
living organisms that works on a population of the solutions simultaneously. It was first 
introduced by Holland (1975) and further developed by Goldberg (1989). It combines the 
concept of survival of the fittest with structured, yet randomised, information exchange to 
undertake robust exploration of the solution space. GA starts with a set of random solutions 
called a population. In the natural world, each individual named chromosome is assigned with 
a fitness value. The exploration processes are performed by genetic operators of crossover 
and mutation. The new generation is selected based on the Darwinian theory of evolution in 
which individuals with better performances will have more probability of being chosen, and it 
is controlled by the parent selection and offspring acceptance strategies.  
 The reason why we choose GA in this study is that, firstly due to the complexity of the 
problem under study, the exact algorithm, i.e. CPLEX, is not able to provide solutions for 
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large sizes of over 100 containers; secondly, GA is a well-known heuristic approach that its 
efficiency is verified by many problems in the literature in order to solve the large-sized 
problems with approximately optimal solutions (Bazzazi et al. (2009), Han et al. (2010), Lee 
et al. (2010) and Tavakkoli-Moghaddam et al. (2009)), and thirdly we need a population-
based approach such as GA to better explore the solution space. By this means, we want to 
obtain the best delivery sequences of SCs and the best assigned locations for import 
containers such that the berth time is minimised.  
Chromosome representation and initialisation: Considering the decision variables 𝑥𝑥(𝑖𝑖,𝑘𝑘)

(𝑗𝑗,𝑙𝑙) 
and 𝑦𝑦(𝑖𝑖,𝑘𝑘)

𝑚𝑚 , i.e. the travelling sequences of SCs and the assigned locations for import 
containers, we construct our initial solutions as follows: Let us denote |𝐷𝐷| as the total number 
of import containers, |𝑁𝑁|  as the total number of containers, |𝑀𝑀|  as the total number of 
available locations and 𝑐𝑐 as the total number of SCs. 

(1) SC assignment: randomly choose a SC from 1 to 𝑐𝑐 (constraints (3) and (4) and 
assign this number to one container; repeat this |𝑁𝑁| times until a string of length 
of |𝑁𝑁| is generated. So that constraints (1) and (2) are met. 

(2) Location assignment: since the locations are uniformly distributed, we first 
randomly choose |𝐷𝐷| locations from 1 to|𝑀𝑀|; then assign a series of numbered 
labels from 1 to|𝐷𝐷| to these selected locations; now we can assign these locations 
to |𝐷𝐷| import containers. For each import container, choose a location from 1 to 
|𝐷𝐷|.So that constraints (5) and (6) are met. 

(3) Chromosomes are generated respectively following steps 1-2 until the population 
size reaches a given number (say 100) to ensure a large search space. 

(4) Evaluate each individual in the initial population by calculating the objective 
function value (OFV), according to constraint (9)-(21). 

  

Let us use an example where there are eight containers, from which containers (1, 1), (2, 1), 
(3, 1) and (4, 1) are handled by QC 1 and containers (1, 2), (2, 2), (3, 2) and (4, 2) are handled 
by QC 2. Particularly, containers (2, 1), (3, 1), (1, 2) and (4, 2) are import containers; the 
others are export containers. Figures 5 and 6 show a chromosome representation of this 
example; for example, in figure 5, import container (2, 1) and export container (2, 2) will be 
handled by SC 1 in sequence; and in figure 6, import container (2, 1) will be assigned to 
location 2 and container (4, 2) will be assigned to location 4. 

Containers Dispatched SCs 

(1, 1) 2 

(2, 1) 1 

(3, 1) 3 

(4, 1) 2 

(1, 2) 3 

(2, 2) 1 

(3, 2) 2 
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(4, 2) 2 

Figure 5: An initial solution of the dispatched SCs for an example with eight containers 
 

Containers Assigned locations 

(2, 1) 2 

(3, 1) 3 

(1, 2) 1 

(4, 2) 4 

Figure 6: An initial solution of the assigned locations for an example with four import containers 
 
Genetic operators design: (1) Crossover: we use uniform crossover for the chromosome of 
‘dispatched SCs’ and use uniform order-based crossover for the chromosome of ‘assigned 
locations’ to avoid missing and conflict genes. (2) Mutation: it provides individual diversity 
during the search process, and it is controlled by a mutation rate. Swap mutation is adopted 
here in which two randomly chosen genes are exchanged for both two parts of the 
chromosome.  
Offspring acceptance: The semi-greedy strategy is used here to accept the offspring 
generated by the genetic operators: an offspring is accepted for the next generation if its 
fitness is better than the average fitness of its parent(s). This strategy is able to reduce the 
computation time of the proposed algorithm and makes a monotonous convergence toward 
the best solution. 
Parents selection strategy: The selection mechanism used here is binary tournament 
selection, in which two randomly chosen individuals are compared in terms of their fitness 
values, and the one with higher fitness will be selected as one parent for generating offspring 
in the next generation. In addition, the best individual in each generation is always chosen as 
parent for next generation. 
Stopping criterion: When the number of evolving generations reaches the defined maximum 
number of generations or the standard deviation of the objective function values (OFVs) in 
the current generation is below a small value, the algorithm stops. These two criteria can 
decrease the computational time. 

5 Computational results 
To assess the efficiency of the genetic algorithm and the proposed integrated approach, we 
conduct a series of experiments through a comparison study between the solver CPLEX and 
GA to determine the best result for different sizes of problems. All the experiments were 
performed on an Intel® Core™ i3 CPU M370@2.40GHz and 4GB RAM under the Windows 
7 operating system. Our proposed GA is implemented using MATLAB 7.14; and for solving 
the MIP formulations in small sizes, the solver CPLEX 12.5 by AIMMS 3.12 is used. For 
each example, we examined it in GA by 20 runs using the same set of parameters, and the 
means of OFVs and computation times are presented.  
Parameters settings 
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(1) The number of containers varies from 5 to 300, where 5-20 are considered as small-
sized problems and 20-300 are considered as large-sized problems. We also consider 
the number of SCs varies from 2 to 10, and the number of QCs varies from 2 to 3. 

(2) The uniform distribution was assumed for all the operational times. The handling 
times of each QC on these containers follow uniform distribution U(30, 180)s, and the 
travelling times of SCs between each QC and each container’s available location 
follow uniform distribution U(40, 300)s. 

(3) GA parameters take the following settings based on preliminary tests: Crossover 
rate 𝑃𝑃𝑐𝑐: 0.8; Mutation rate 𝑃𝑃𝑚𝑚: 0.01; Population size Pop: 100; and Maximum number 
of generations  𝑀𝑀𝑔𝑔: 40. 

Small-sized problems 
We examine 10 problems to compare the performances of the proposed GA with CPLEX in 
small sizes. Table 1 provides comparison results for CPLEX and GA for the various small-
sized problems.  
Table 1: Comparison results of CPLEX and GA in small sizes 
No No. of 

containers 
QCs/ 
SCs 

CPLEX 
 

 
 

GA 
 

 
 

OFV Gap 
rate (%) 

Computation  
time (s) 

OFV 
(s) 

Computation  
time (s) 

OFV 
(s) 

1 5 2/2 0.03 286 0.12 286 0% 
2 6 2/2 0.17 502 0.21 502 0% 
3 7 2/2 0.03 519 0.27 519 0% 
4 8 2/3 0.02 538 0.36 544 0% 
5 9 2/3 1.08 620 1.74 629 1.45% 
6 10 2/3 1.03 742 1.08 754 1.62% 
7 10 2/4 1.08 715 1.55 730 2.09% 
8 15 2/4 2.47 1143 1.92 1162 1.66% 
9 20 2/3 2.72 1647 2.64 1694 2.85% 

10 20 2/4 4.77 1754 2.58 1797 2.45% 
 
 In order to compare the two algorithms, we consider the computation time and objective 
function value (OFV) as the measures of efficiency and effectiveness. In each problem, the 
related values are listed. In order to determine whether there is a significant difference among 
the performance of the two algorithms, an OFV gap (in percentage for each example) is 
calculated. These results indicate that generally, for small-sized problems, CPLEX 
outperforms GA in obtaining better OFV in a shorter computation time. However, the 
average gap between GA and CPLEX is quite small with the average gap of 1.21%, from 
which we are convinced about the validity of our proposed GA.  
Large-sized problems 
To further demonstrate the benefits of our proposed GA, we compare GA with CPLEX in 
solving the problems in large sizes; we conduct the following experiments and present the 
results in table 2. It is observed that GA provides much more stable solutions in that it is able 
to solve problems with more than 100 containers which CPLEX cannot achieve. In addition, 
the convergence time of GA is less than that of CPLEX, which indicates that the proposed 
integrated problem is difficult to solve within a limited time by exact algorithms. However, 
when container number is small, computation time by CPLEX is less than that of GA; it 
shows an exponential increase in the computation time by CPLEX when the container 
number increases. As shown in table 2, CPLEX could only obtain the optimal solutions from 
cases 11 to 25. However, the average of the relative gap between GA and the best solution 
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obtained by CPLEX in terms of OFVs for these 15 cases is about 2.6 %, which is a promising 
result. It is observed from this table that the OFV is reduced as the number of QCs is 
increased (for example case 20 and case 21). This trend is the same when the number of SCs 
is increased (for example case 21 and case 22). As discussed in previous sections, there is a 
trade-off between the improvement of OFV and the increased number of equipment. Further 
analysis has been performed to see the evolving process of our proposed GA as shown in 
figure 7. This figure shows the typical GA convergence performance for an example with 100 
containers, two QCs and eight SCs. It can be seen that the evolving process converges fast 
and achieves the near-optimal solution before 30 generations. These results clearly indicate 
that our proposed GA can obtain better-quality solutions with much shorter computing time 
compared with CPLEX.  
Table 2: Comparison results of CPLEX and GA in large sizes 
No No. of 

containers 
QCs/ 
SCs 

CPLEX 
 

 
 

GA 
 

 
 

OFV Gap 
rate (%) 

Computation  
time (s) 

OFV 
(s) 

Computation  
time (s) 

OFV 
(s) 

11 30 2/3 8.63 2591 21.19 2629 1.46% 
12 30 2/4 13.04 1963 40.71 1988 1.27% 
13 30 2/5 12.03 1872 20.97 1898 1.38% 
14 40 2/3 9.61 3309 72.51 3374 1.96% 
15 40 2/4 10.33 2891 51.32 2988 3.35% 
16 40 2/5 12.42 2413 112.11 2441 1.16% 
17 50 2/5 19.50 3243 78.18 3316 2.25% 
18 50 2/6 165.27 3027 104.56 3093 2.18% 
19 50 2/7 113.15 2898 135.23 2938 1.38% 
20 60 2/6 124.76 3607 179.82 3721 3.16% 
21 60 3/6 227.35 3013 122.90 3105 3.05% 
22 60 3/7 334.78 2871 98.63 2939 2.36% 
23 80 2/6 1163.52 5106 245.14 5182 1.48% 
24 80 2/7 1245.81 4992 192.74 5102 2.20% 
25 80 3/7 2667.93 3897 272.01 3991 2.41% 
26 100 2/6 / / 414.68 6553 / 
27 100 2/7 / / 255.04 6491 / 
28 100 2/8 / / 301.70 5503 / 
29 150 2/7 / / 966.14 9383 / 
30 150 3/7 / / 970.27 7280 / 
31 150 3/8 / / 810.10 7253 / 
32 200 3/8 / / 1004.10 9925 / 
33 200 3/9 / / 881.22 9501 / 
34 200 3/10 / / 1574.70 9209 / 
35 300 3/8 / / 2013.73 16003 / 
36 300 3/9 / / 1964.01 15852 / 
37 300 3/10 / / 2316.28 15074 / 
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Figure 7: GA convergence process for an example with 100 containers, two QCs and eight SCs 

6 Conclusions 
The novelty of this study lies in the formulation of the new model and the heuristic methods 
of the model for solving the integrated problem. We consider the integration of SC 
scheduling and container storage allocation problem in the straddle-carrier system. These 
problems of searching optimal schedules of SCs and optimal locations of containers are very 
important in practical port logistics. Container unloading and loading processes are 
considered simultaneously. The problem is formulated as the mixed-integer programming 
problems aiming to minimise the berth time of the ship. As the NP-hard problem, the 
computational complexity increases exponentially with the increasing problem size. This 
makes it difficult to solve within a reasonable time with an exact method (CPLEX for 
example). This requires the use of heuristics methods (i.e. GA in this paper) to find 
approximately optimal solutions for large sizes. The adoption of GA provides a strong 
potential to solve real-world problems. The novelty of GA proposed here lies in the matrix 
representations of the initial solution, i.e. chromosomes, which are specially tailored to the 
problem under study. In this paper, its efficiency is proved first by the quality of solutions 
obtained in small-sized problems compared with the solutions from CPLEX, and the average 
gap between CPLEX and GA in terms of OFVs for the small-sized problems is very small; 
then the superiority of the proposed GA can be verified through large-scale problems in 
providing good solutions in a short computation time; and finally we are looking for the 
solutions with both efficiency and stability, which are illustrated by GA convergence 
performance. Thus, it was concluded that GA outperforms CPLEX in the average 
computational time and the ability of solving large-sized problems. 
 There still are, however, some possible directions for further research. The proposed 
models can be extended for uncertain environments. In practice, uncertainty exists in a 
number of areas, such as traffic congestions, machine breakdown, incorrect information of 
container, or ship delay, among others. To incorporate such uncertainties into the problem 
may require other approaches; for example, the stochastic programming approach or rolling 
horizon approach. Besides, implementing other heuristics or developing hybrid heuristics for 
these problems in order to find out whether the solutions can be further improved also 
suggests a promising piece of work. With the improved efficiency of the developed algorithm, 
the model can be further extended into a more general multi-ship multi-berth case.  
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Appendix: Mathematical formulation 
 

We summarise the assumptions made in this study: 
• Both loading and unloading processes are considered simultaneously in the single 

vessel environment. 
• Travelling time between any two QCs are known, assuming QCs are not moving 

along the quayside during the unloading and loading processes. 
• There is at most one container at the buffer area at any time during the operations.  
• The sequences for each QC to handle both import and export containers are known, 

which means that the dual-cycle operations are prescribed by the fixed container 
sequences of the QCs. 

• Number of containers, number of SCs and number of QCs are all known. 
• A SC can only deliver one container at a time, and a QC can only handle one 

container at a time. 
• SCs are shared among all the QCs. In other words, SCs can deliver containers to any 

of the QCs. 
• The travelling times between export containers’ yard locations to any of the QCs are 

known. This is because the locations of export containers and the locations of QCs are 
known. 

• Yard locations for all the export containers are known; therefore the SCs’ travelling 
times between any two export containers in the yard are known. 

• Container reshuffles in the yard are not included in this study. All the containers to be 
processed are either on the top or will be placed on the top of the stacks. 

• The pickup/drop-off times of containers by QCs and SCs are assumed to be included 
in the travel times. 

• Traffic congestion on the road of SCs is not considered. 
  

In the mathematical model, the following sets and parameters are defined: 

K set of QCs 

 C set of SCs 

N set of containers 

 L set of export containers 

 D set of import containers  

 𝑃𝑃 a very large number 

M set of locations for import containers 

(𝑆𝑆, 𝐼𝐼) the dummy starting job (container) 

(𝐹𝐹, 𝐼𝐼) the dummy ending job (container) 

𝑂𝑂𝑆𝑆 The job set which contains all the jobs including the dummy starting 
job, i.e. 
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𝑂𝑂𝑆𝑆 = 𝑁𝑁 ∪ (𝑆𝑆, 𝐼𝐼) 

𝑂𝑂𝐹𝐹 The job set which contains all the jobs including the dummy ending 
job, i.e. 

𝑂𝑂𝐹𝐹 = 𝑁𝑁 ∪ (𝐹𝐹, 𝐼𝐼) 

O The job set which contains all the jobs including dummy starting and 
ending jobs, i.e. 

𝑂𝑂 = {(𝑆𝑆, 𝐼𝐼), (𝐹𝐹, 𝐼𝐼)} ∪ 𝑁𝑁 

𝑘𝑘, 𝑙𝑙 index for QCs 

(𝑖𝑖,𝑘𝑘), (𝑗𝑗, 𝑙𝑙) index for containers, container (i, k) means the ith container handled 
by QC k 

𝑁𝑁𝑘𝑘 The total number of containers handled by QC k 

𝑚𝑚 index for yard locations, m is a positive integer 

c The total number of SCs 

ℎ(𝑖𝑖,𝑘𝑘) QC k’s handling time of container (𝑖𝑖, 𝑘𝑘) 

𝑡𝑡(𝑖𝑖,𝑘𝑘) The SC travel time for each export container (i, k) from its yard 
location to its QC k 

𝜏𝜏𝑘𝑘𝑚𝑚 The SC travel time between any QC k to any available yard location 
m 

𝜃𝜃(𝑖𝑖,𝑘𝑘)
𝑙𝑙  The SC travel time for each export container (i, k) from its yard 

location to any  QC l 

𝜎𝜎(𝑖𝑖,𝑘𝑘)
𝑚𝑚  The SC travel time for each export container (𝑖𝑖, 𝑘𝑘)between its yard 

location and any of the available location m 

𝜋𝜋𝑘𝑘𝑙𝑙  The SC travel time between any two QCs, i.e. QC k and QC l 

 The decision variables are as follows: 

𝑢𝑢(𝑖𝑖,𝑘𝑘) the time QC k starts handling container (i, k); for import containers, this 
corresponds to the time QC k picks it up from the ship; for export containers, it 
corresponds to the time QC k picks it up from the buffer 

𝑤𝑤(𝑖𝑖,𝑘𝑘) the time container (𝑖𝑖,𝑘𝑘) is at the buffer. For import containers, it corresponds 
to the time a SC picks up container (i, k) from the buffer; for export containers, 
it corresponds to the time a SC sets container (i, k) down on the buffer 

𝑣𝑣(𝑖𝑖,𝑘𝑘) the time container (𝑖𝑖,𝑘𝑘) is in the yard. For import containers, it corresponds to 
the time container (i, k) has been placed into its yard location by a SC; for 
export containers, it corresponds to the time container (i, k) has been picked up 
from its yard location by a SC 
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The decisions of SC schedules and storage allocation can be represented using the following 
two decision variables: 

𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙) = �

1, if container  (𝑗𝑗, 𝑙𝑙) is delivered immediatly after container (i, k) by 
 the same SC
0, otherwise ∀(𝑖𝑖, 𝑘𝑘) ∈ 𝑂𝑂𝑆𝑆,∀(𝑗𝑗, 𝑙𝑙) ∈ 𝑂𝑂𝐹𝐹

 

𝑦𝑦(𝑖𝑖,𝑘𝑘)
𝑚𝑚 = �1, if import container (𝑖𝑖, 𝑘𝑘)will be located in location 𝑚𝑚

0, otherwise ∀(𝑖𝑖, 𝑘𝑘) ∈ 𝐷𝐷,∀𝑚𝑚 ∈ 𝑀𝑀  

Objective: Minimise berth time maxk ( 𝑢𝑢(𝑁𝑁𝑘𝑘 ,𝑘𝑘)+ℎ(𝑁𝑁𝑘𝑘 ,𝑘𝑘)) 

Subject to: 

� 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙)

(𝑗𝑗,𝑙𝑙)∈𝑂𝑂𝐹𝐹

= 1,∀(𝑖𝑖,𝑘𝑘) ∈ 𝑁𝑁 (1)  

� 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙)

(𝑖𝑖,𝑘𝑘)∈𝑂𝑂𝑆𝑆

= 1,∀(𝑗𝑗, 𝑙𝑙) ∈ 𝑁𝑁 (2)  

� 𝑥𝑥(𝑆𝑆,𝐼𝐼)
(𝑗𝑗,𝑙𝑙)

(𝑗𝑗,𝑙𝑙)∈𝑁𝑁

≤ 𝑐𝑐 (3)  

� 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝐹𝐹,𝐼𝐼)

(𝑖𝑖,𝑘𝑘)∈𝑁𝑁

≤ 𝑐𝑐 (4)  

� 𝑦𝑦(𝑖𝑖,𝑘𝑘)
𝑚𝑚

𝑚𝑚∈𝑀𝑀

= 1,∀(𝑖𝑖, 𝑘𝑘) ∈ 𝐷𝐷 (5)  

� 𝑦𝑦(𝑖𝑖,𝑘𝑘)
𝑚𝑚

(𝑖𝑖,𝑘𝑘)∈𝐷𝐷

≤ 1,∀𝑚𝑚 ∈ 𝑀𝑀 (6)  

𝑣𝑣(𝑖𝑖,𝑘𝑘) + 𝑡𝑡(𝑖𝑖,𝑘𝑘) ≤ 𝑤𝑤(𝑖𝑖,𝑘𝑘),∀(𝑖𝑖, 𝑘𝑘) ∈ 𝐿𝐿 (7)  

𝑤𝑤(𝑖𝑖,𝑘𝑘) ≤ 𝑢𝑢(𝑖𝑖,𝑘𝑘),∀(𝑖𝑖, 𝑘𝑘) ∈ 𝐿𝐿 (8)  

𝑤𝑤(𝑖𝑖,𝑘𝑘) + � 𝜏𝜏𝑘𝑘𝑚𝑚
𝑚𝑚∈𝑀𝑀

𝑦𝑦(𝑖𝑖,𝑘𝑘)
𝑚𝑚 = 𝑣𝑣(𝑖𝑖,𝑘𝑘),∀(𝑖𝑖,𝑘𝑘) ∈ 𝐷𝐷,∀𝑘𝑘 ∈ 𝐾𝐾 (9)  

𝑢𝑢(𝑖𝑖,𝑘𝑘) + ℎ(𝑖𝑖,𝑘𝑘) ≤ 𝑤𝑤(𝑖𝑖,𝑘𝑘),∀(𝑖𝑖, 𝑘𝑘) ∈ 𝐷𝐷 (10)  

𝑢𝑢(𝑖𝑖+1,𝑘𝑘) − 𝑢𝑢(𝑖𝑖,𝑘𝑘) ≥ ℎ(𝑖𝑖,𝑘𝑘),∀(𝑖𝑖 + 1, 𝑘𝑘), (𝑖𝑖, 𝑘𝑘) ∈ 𝑁𝑁, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑘𝑘 − 1, ∀𝑘𝑘 ∈ 𝐾𝐾 (11)  

𝑤𝑤(𝑖𝑖,𝑘𝑘) + 𝜃𝜃(𝑗𝑗,𝑙𝑙)
𝑘𝑘 ≤ 𝑣𝑣(𝑗𝑗,𝑙𝑙) + 𝑃𝑃(1− 𝑥𝑥(𝑖𝑖,𝑘𝑘)

(𝑗𝑗,𝑙𝑙)),∀(𝑖𝑖,𝑘𝑘) ∈ 𝐿𝐿 ∪ (𝑆𝑆, 𝐼𝐼),∀(𝑗𝑗, 𝑙𝑙) ∈ 𝐿𝐿 ∪ (𝐹𝐹, 𝐼𝐼),∀𝑘𝑘 ∈ 𝐾𝐾 (12)  

𝑣𝑣(𝑖𝑖,𝑘𝑘) + �𝜏𝜏𝑙𝑙𝑚𝑚𝑦𝑦(𝑖𝑖,𝑘𝑘)
𝑚𝑚

𝑚𝑚

≤ 𝑤𝑤(𝑗𝑗,𝑙𝑙) + 𝑃𝑃 �1− 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙)� ,∀(𝑖𝑖,𝑘𝑘) ∈ 𝐷𝐷 ∪ (𝑆𝑆, 𝐼𝐼), 

                                                         ∀(𝑗𝑗, 𝑙𝑙) ∈ 𝐷𝐷 ∪ (𝐹𝐹, 𝐼𝐼),∀𝑙𝑙 ∈ 𝐾𝐾 

(13)  
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𝑤𝑤(𝑖𝑖,𝑘𝑘) + 𝜋𝜋𝑘𝑘𝑙𝑙 ≤ 𝑤𝑤(𝑗𝑗,𝑙𝑙) + 𝑃𝑃 �1− 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙)� ,∀(𝑖𝑖,𝑘𝑘) ∈ 𝐿𝐿 ∪ (𝑆𝑆, 𝐼𝐼),∀(𝑗𝑗, 𝑙𝑙) ∈ 𝐷𝐷 ∪ (𝐹𝐹, 𝐼𝐼),∀𝑘𝑘, 𝑙𝑙 ∈ 𝐾𝐾 (14)  

𝑣𝑣(𝑖𝑖,𝑘𝑘) + � 𝜎𝜎(𝑗𝑗,𝑙𝑙)
𝑚𝑚 𝑦𝑦(𝑖𝑖,𝑘𝑘)

𝑚𝑚

𝑚𝑚∈𝑀𝑀

≤ 𝑣𝑣(𝑗𝑗,𝑙𝑙) + 𝑃𝑃 �1− 𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙)� ,∀(𝑖𝑖,𝑘𝑘) ∈ 𝐷𝐷 ∪ (𝑆𝑆, 𝐼𝐼),   

                                                  ∀(𝑗𝑗, 𝑙𝑙) ∈ 𝐿𝐿 ∪ (𝐹𝐹, 𝐼𝐼) 

(15)  

𝑢𝑢(𝑖𝑖,𝑘𝑘) ≤ 𝑤𝑤(𝑖𝑖+1,𝑘𝑘),∀(𝑖𝑖 + 1,𝑘𝑘), (𝑖𝑖,𝑘𝑘) ∈ 𝐿𝐿, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑘𝑘 − 1,∀𝑘𝑘 ∈ 𝐾𝐾 (16)  

𝑤𝑤(𝑖𝑖,𝑘𝑘) ≤ 𝑢𝑢(𝑖𝑖+1,𝑘𝑘) + ℎ(𝑖𝑖+1,𝑘𝑘),∀(𝑖𝑖 + 1, 𝑘𝑘), (𝑖𝑖, 𝑘𝑘) ∈ 𝐷𝐷, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑘𝑘 − 1,∀𝑘𝑘 ∈ 𝐾𝐾 (17)  

𝑢𝑢(𝑖𝑖,𝑘𝑘) + ℎ(𝑖𝑖,𝑘𝑘) ≤ 𝑢𝑢(𝑖𝑖+1,𝑘𝑘),∀(𝑖𝑖 + 1, 𝑘𝑘) ∈ 𝐷𝐷, (𝑖𝑖, 𝑘𝑘) ∈ 𝐿𝐿, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑘𝑘 − 1,∀𝑘𝑘 ∈ 𝐾𝐾 (18)  

𝑤𝑤(𝑖𝑖,𝑘𝑘) ≤ 𝑤𝑤(𝑖𝑖+1,𝑘𝑘),∀(𝑖𝑖 + 1, 𝑘𝑘) ∈ 𝐿𝐿, (𝑖𝑖,𝑘𝑘) ∈ 𝐷𝐷, 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑘𝑘 − 1,∀𝑘𝑘 ∈ 𝐾𝐾 (19)  

𝑥𝑥(𝑖𝑖,𝑘𝑘)
(𝑗𝑗,𝑙𝑙), 𝑦𝑦(𝑖𝑖,𝑘𝑘)

𝑚𝑚 ∈ {0,1},∀(𝑖𝑖, 𝑘𝑘), (𝑗𝑗, 𝑙𝑙) ∈ 𝑂𝑂,∀𝑚𝑚 ∈ 𝑀𝑀 (20)  

𝑢𝑢(𝑖𝑖,𝑘𝑘),𝑤𝑤(𝑖𝑖,𝑘𝑘), 𝑣𝑣(𝑖𝑖,𝑘𝑘) ≥ 0,∀(𝑖𝑖, 𝑘𝑘) ∈ 𝑁𝑁 (21)  

 The objective is to minimise the makespan of unloading and loading containers at the 
quayside, i.e. ship’s berth time. It provides a way to calculate the completion time for all the 
QCs.  

Constraints (1)-(6) are resource constraints.  

Constraint (1) implies that for every container (𝑖𝑖,𝑘𝑘) ∈ 𝑁𝑁 , there is one container (𝑗𝑗, 𝑙𝑙) ∈
𝑁𝑁 handled after it by the same SC.  

Constraint (2) represents that for every container (𝑗𝑗, 𝑙𝑙) ∈ 𝑂𝑂𝐹𝐹, there is one container (𝑖𝑖, 𝑘𝑘) ∈
𝑂𝑂𝑆𝑆 delivered before it by the same SC.  

Constraint (3) and (4) guarantee that the total number of SCs that are employed for unloading 
and loading containers is c. 

Constraint (5) ensures that every import container (𝑖𝑖,𝑘𝑘) ∈ 𝐷𝐷 will be located in exactly one 
location m after the unloading process.  

Constraint (6) means that every available location 𝑚𝑚 ∈ 𝑀𝑀 can only accommodate, at most, 
one container.  

Constraint (7) states that the time every export container has been placed in the buffer and the 
time it has been picked up from the yard by a SC must be set at least by a certain travel time 
between the yard and the quayside.  

Constraint (8) guarantees that each export container will be loaded by a QC after it has been 
placed onto the buffer.  

Constraint (9) means that the time of QC k between picking up any import containers by a SC 
at the buffer and the time SC placing it onto the container’s assigned location must be set at 
least by a certain travelling time between QC k and location m.  
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Constraint (10) means that an import container can only be picked up from the buffer after 
the QC has released it to the buffer.  

Constraint (11) ensures that the times for two containers (i+1, k) and (i, k) handled by the 
same QC k must be set at least by a certain handling time of container (i, k).  

Constraints (12)- (15) give the time relationships for delivering two successive containers by 
the same SC in the four transportation conditions.  

Specifically, if container (𝑗𝑗, 𝑙𝑙) is delivered immediately after container (𝑖𝑖, 𝑘𝑘) by the same SC, 
constraint (12) means that if both (𝑗𝑗, 𝑙𝑙) and (𝑖𝑖,𝑘𝑘) are export containers, then the time between 
picking up container (𝑗𝑗, 𝑙𝑙)in the yard and putting container(𝑖𝑖, 𝑘𝑘) in the buffer must be set at 
least a certain travelling time of SC from QC k to the yard location of (𝑗𝑗, 𝑙𝑙).  

Constraint (13) means that if both containers (𝑗𝑗, 𝑙𝑙)and (𝑖𝑖, 𝑘𝑘)are import containers, then the 
time between releasing container (𝑖𝑖, 𝑘𝑘) in the storage yard and picking up container (𝑗𝑗, 𝑙𝑙) in 
the buffer must be set by at least a certain travelling time from container(𝑖𝑖, 𝑘𝑘)’s assigned 
location to QC l.  

Constraint (14) means that if container (𝑖𝑖, 𝑘𝑘) is an export container and container (𝑗𝑗, 𝑙𝑙) is an 
import container, then time between taking container (𝑖𝑖, 𝑘𝑘) down to the buffer and picking up 
container (𝑗𝑗, 𝑙𝑙) must be set at least by a certain travelling time from QC k to QC l.  

Constraint (15) means that if container (𝑖𝑖, 𝑘𝑘) is an import container and container (𝑗𝑗, 𝑙𝑙) is an 
export container, then the time between placing container (𝑖𝑖, 𝑘𝑘) into its assigned location and 
picking up container (𝑗𝑗, 𝑙𝑙) must be set at least by a certain travelling time from the assigned 
location m of container (𝑖𝑖, 𝑘𝑘) to the yard location of (𝑗𝑗, 𝑙𝑙).  

Constraints (16)- (19) are for the time relationship for handling two successive containers by 
the same QC for the four conditions to ensure there is, at most, one container at the buffer at 
any time. Constraint (16) implies that if container (𝑖𝑖 + 1,𝑘𝑘) and container (𝑖𝑖,𝑘𝑘) are both 
export containers, then container (𝑖𝑖 + 1,𝑘𝑘)  can be placed on the buffer by a SC after 
container (𝑖𝑖,𝑘𝑘) has been picked up by QC k.  

Constraint (17) implies that if container (𝑖𝑖 + 1,𝑘𝑘)  and container (𝑖𝑖, 𝑘𝑘)  are both import 
containers, then container (𝑖𝑖 + 1, 𝑘𝑘) can be placed on the buffer after container (𝑖𝑖, 𝑘𝑘) has 
been picked up by a SC.  

Constraint (18) implies that if container (𝑖𝑖 + 1,𝑘𝑘) is an import container and container (𝑖𝑖, 𝑘𝑘) 
is an export container, then the starting time to handle container (𝑖𝑖 + 1, 𝑘𝑘) must be after 
container (𝑖𝑖,𝑘𝑘) has been place in its ship location.  

Constraint (19) implies that if container (𝑖𝑖 + 1,𝑘𝑘) is an export container and container (𝑖𝑖, 𝑘𝑘) 
is an import container, then the time in which container (𝑖𝑖 + 1, 𝑘𝑘) can be placed on the buffer 
must be set after the time that container (𝑖𝑖,𝑘𝑘) has been picked up by a SC.  

Constraint (20) and (21) are binary and non-negative constraints. 
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